The Optimization of Matrix Preparation Process and Performance Testing for Molten Carbonate Fuel Cell
نویسندگان
چکیده
منابع مشابه
Molten Carbonate Fuel Cell Modelling
Hybrid plants where a fuel cell and a gas turbine are combined have attracted the attention of the power system community. In this paper, a model is provided of a Molten Carbonate Fuel Cell stack and of the thermo-hydraulic equipment in which it is embedded. The model is worked out from basic physical considerations; however, it is also simple enough for simulation and control purposes. Besides...
متن کاملAnalysis for a Molten Carbonate Fuel Cell
In this paper we analyze a planar model for a molten carbonate electrode of a fuel cell. The model consists of two coupled second-order ordinary diierential equations, one for the concentration of the reactant gas and one for the potential. Restricting ourselves to the case of a positive reaction order in the Butler-Volmer equation, we consider existence, uniqueness, various monotonicity proper...
متن کاملMolten Carbonate Fuel Cells
Molten carbonate fuel cells use carbonate salts of alkali metals as electrolyte. Due to the highly corrosive nature of the electrolyte, various countermeasures are being developed. MCFCs are expected for high-efficiency power generation systems using hydrocarbon fuels, such as natural gas and coal gas. This article describes the mechanisms of operation and cell degradation, as well as the featu...
متن کاملA simple high-performance matrix-free biomass molten carbonate fuel cell without CO2 recirculation
In previous reports, flowing CO2 at the cathode is essential for either conventional molten carbonate fuel cells (MCFCs) based on molten carbonate/LiAlO2 electrolytes or matrix-free MCFCs. For the first time, we demonstrate a high-performance matrix-free MCFC without CO2 recirculation. At 800°C, power densities of 430 and 410 mW/cm(2) are achieved when biomass-bamboo charcoal and wood, respecti...
متن کاملMolten Carbonate Fuel Cells for Electrolysis
The molten carbonate fuel cell (MCFC) has evolved to current megawatt-scale commercial power plants. When using the fuel cell for electrolysis (MCEC), it provides a promising option for producing fuel gases such as hydrogen, via water electrolysis, and syngas, via co-electrolysis of water and carbon dioxide. The molten carbonate cell can thereby operate reversibly as a dual energy converter for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemistry
سال: 2014
ISSN: 2090-9063,2090-9071
DOI: 10.1155/2014/625893